

Alpha Carbon Hardmask in 3D-Nand Device Manufacturing Characterization by Multiple Metrology Methods for In-Line Control of High Aspect Ratio Etching Priya Mukundhan, Ph.D. Thin Films Metrology

3D NAND Industry Roadmap

3D NAND Etch Complexity

Hard mask material property & thickness critical for defining memory channel. Material should be

- highly etch selective and should have higher modulus
- as an etch hard mask, the film must block the F atoms from diffusing into sub-layers of the 3D NAND stack

N+1

a-Carbon Material Properties

Ternary Phase Diagram of a-C:H System

Bonding Structures in a-C, a-C:H Network

Material property is a function of process temperature and chemistry

- 1. J. Robertson, Mat Sci and Eng. R 37, 129 -281 (2002)
- 2. J. Arlein et al. JOURNAL OF APPLIED PHYSICS, 104, 033508, 2008

3. H. Park et al. RSC Adv., 2020, 10, 6822

Increasing Density High sp³ High Bulk Modulus High stress films

Increasing H-conc. High sp³ High Bulk Modulus Lower stress films

a-Carbon: Metrology Requirements

- Parameters of interest
 - Thickness
 - Optical constants
 - Density
 - sp³/sp² hybridization
- Process Window ±0.7% on 2-3µm thick films

Shrinking process window \rightarrow stringent metrology requirements

a-Carbon Materials Metrology

Non-destructive thickness metrology

a-C Films Measurement using PULSE[™] Metrology

Schematic Representation

How it works

- Light from the pump beam excites a sound wave at the opaque substrate
- Light from the probe beam is reflected from the transparent film surface and from the travelling sound wave
- The reflected beams interfere at the detector, changing from destructive to constructive interference as the sound wave travels

$$V_L = \frac{\lambda}{2n\tau\cos\theta}$$

- VT longitudinal sound velocity
- index of refraction n
- wavelength of light λ
- θ angle of incidence of light

Data Analysis of a-C Films using PULSE Metrology

Longitudinal Velocity

Excellent signal to noise -> meets repeatability

OEM Use Case: Process Development

Thickness (A)sands 22 2 2 -150 -50 Sull Contract and a second 2 -148 -147 -146 -145 -149 -150 X (mm)

27

- Small spot ~Maps and high-resolution edge scans (0.5mm exclusion)
- Robust recipes to handle process changes

a-C: Correlation with X-SEM

With feed forward, thickness accuracy improved by 10X compared to X-SEM

Optical metrology: Atlas® III+

a-C: Sound Velocity, Young's Modulus & Etch Process

Etch profile evolution

- initial etch (<10s) rapid
- bulk etch- slow and determines etch reaction rate

Etch profiles are controlled by tuning the **density** of the films

Bulk modulus α density

Absorption coefficient (k) used as *proxy* for density & bulk modulus

Non-destructive modulus measurement **PULSE + Optical**

$$V_L = \frac{\lambda}{2n\tau\cos\theta}$$
$$Y = \frac{(1-2\nu)(1+\nu)}{(1-\nu)}\rho V_L^2$$

ρ is the film density (input) v is the Poisson's ratio (input)

Sound velocity provides a direct measurement of modulus and used in etch process monitoring & control

Young's Modulus & Etch Process

Direct correlation between modulus and velocity

Inverse correlation between modulus and etch rate

a-C: Characterizing with FTIR

a-C films: Summary of properties

Dep. Temp. (°C)	% C by atom	% H by atom	n @ 633nm	k@ 633nm
350°C	56	42	1.81	0.05
550°C	70	27	2.00	0.38
275°C	60	40	1.99	<0.10

Sample at 550°C is significantly more sp² (graphitic) compared to other two samples

CH_x stretching vibrations of the Type 2 network have more sp² CH₂ (2950 cm⁻¹) and sp² CH (3050 cm⁻¹) bonds compared to sp³ bonds

a-C: FTIR Measurements from a 5000Å film

Assignment	Predicted wavenumber (1/cm)	Measured wavenumber (1/cm)
sp2 CH2 (olefinic)	3020	3020.02
sp3 CH3 (asymmetrical)	2960-2970	2959.31
sp3 CH2 (asymmetrical)	2920-2925	2923.55
sp3 CH3 (symmetrical)	2865-2875	2866.27

Characterization of the bonding structure of the materials using transmission FTIR sp3/sp2 ratio information obtained helpful during process development

Fourier Transform Infrared Spectroscopy FTIR: QS1200

1.485 1.458 1.430 1.403 1.376 1.349 1.322 1.294 1.267 1.240 1.213 1.185

Summary

- A-Carbon films are critical in the 3D NAND process.
- Thickness and elastic modulus are important to define channel hole and to tune etch profile, respectively
- Multiple metrology tools are used to comprehensively characterize this complex system
 - PULSE Acoustic metrology provides thickness and velocity.
 - Velocity is directly correlated to elastic modulus
 - In combination with optical metrology, it enables tuning of etch process for high aspect ratio structures
 - FTIR has found adoption as complementary technique to provide information on the bonding structure of the films

Acknowledgment

- A. Antonelli for valuable discussions & insights into the a-C hard mask deposition and metrology development
- R. Mair, J. Dai and the Applications Team at Onto Innovation

