MVA Analysis Flow for FDC Data

Jay Orbon, Yulei Sun Presented by Nick Ashwell

Understanding Supply Chain Yield Dynamics

Requires Complex Enterprise-level Supply Chain Optimization:

- Big Data
- Digital Threads
- Package to Tool Correlations
- Real-time Dashboards
- Best in Class Yield Analytics

Structural Failures Component Matching Package Interconnection Delays Bump Coplanarity Device Parametric Variation Performance Failures Process Tool Failure Device Contamination

Solutions Must Remove Risk from the Electronics Supply Chain

New Paradigms are Required

Advanced analytics requires an approach completely different from that of traditional empirical analysis.

Data Preparation

Data Preparation is Critical

80-20 Rule: 80% of a typical data science project is sourcing, cleaning, and preparing the data, while the remaining 20% is actual data analysis

Thread Synchronization Engine™

Step Cut Data Joining...

#1

••

•••

• • •

#2

• •

• •

#3

••

••

#4

Conventional Cut

		• •			• •		••		•				••		
• • •	•	• •	• •	• •	• •	••	, •	• • •	P (• •	••	••	• •	• • •	•
• •	••	• •	• •	••	• •	• • •	. •	•••	• •	•••	• • •	• • •	• •	•••	• • •

Could be with or without Metrology

• •

•

Laser Cut

Trim Data Channel Channel #3 #4 ••• ••• ••• ••• #4 #1 #2 #3 • • • • • • • •

"On Cut Data"

• _{• •} • • • • • • • • • Trimmed Laser Groove Data

(2nd FDC data for cut line)

Conventional, Laser + Metrology

Batch PLSR

Hoteling T2 for Visualization

Ranking signals using the prediction errors

Multiple Algorithms – for Multiple Purposes

Mathematics of Predictive Each Technique has Strengths

TYPES OF MACHINE LEARNING

PCA – Identify Clusters What Defect Excursions?

Decision Trees – Prioritize Results Which Signal to Adjust?

MLR – Quantify Results How Much to Adjust?

Problem Statement

Simple Chamber Matching

- 59 variables do not match
- F-test values are very significant
- Need a better method

Chamber Match using PCA

- Hoteling's T2 Graph shows 60% of all chamber variation in 2 dimensional graph
- Circle is "3 sigma"
- Sometimes 3 sigma is not good enough
- What is driving the difference?

PLS Variable Importance Chart – Etch Rate

- Etch Rate is stratified by M2 Temp Mean and chamber.
- Second variable needed to explain stratification.

Two Way Interaction - Etch Rate

Critical Variables to FDC Sensors

No Quality Data – Contribution Plot

- Top 4 variables control 80% of variation in CD and EtchRate
- Without Quality Data tool matching may be expensive

Automation

Intelligent Analysis Engines

Data Democracy

Step 1 Any Supported Product...

Step 2 Create/Select chart Element...

Step 3 Combined to create powerful interactive visualizations !

Easy web based drill down visualizations for the CEOs to Operators

Driving Equipment Productivity

Ion Beam – Water Leak Case Study: Predicting Unscheduled Downtime

Field Case Study – Start of Run Pressure

15% Reduction in Maintenance Costs

Old Diagnostic Process

- Manually Pull logs FSE Travel Costs
- Manipulate, Align and Filter data Man Days
- Offline analysis at HQ Man Days
- Unscheduled Equipment downtime
- Scrap Potential

5 days to root cause identification

Rudolph Monitoring

- Run Pressure is being constantly monitored
- · Critical timing after wafer clamp, before Gas flow starts
- · Model detects upward slope and alarms
 - Automation automatically Notified
 - Dashboards displays error state
- Equipment team know exactly what the issue is to resolve
- · Standard procedures now at customers site

Prevented unscheduled downtime

Ion Beam Optics

Case Study: Optics PM Prediction (Chriss el al, APC Conference, 2016)

Summary

- The Goal is Actionable Intelligence.
- New Analytical Paradigms will be Required.
- Intelligent Digital Threading[™] is Essential.
 - Across the Enterprise
 - Deep into the Process
- Visible, Relevant, Secure, High-integrity Data is a Must.

谢谢 | 謝謝 danke ありがとう

감사합니다 **merci** obrigado

info@rudolphtech.com www.rudolphtech.com

