

PCA - Cost of Ownership and Return on Investment

John Strom
Senior Fellow

Voice of Customer Trips (VoC)

- What do you want in next generation Probe Card Analyzer (PCA)?
 - Asked about Probe Card Roadmaps
 - Array Size
 - Probe Pitch
 - Overtravel Force
 - ...
 - Probe Card Analyzer (PCA) test requirements
 - Accuracy Repeatability
 - Flexibility Voltages, States
 - New Requirements

Next Generation PCA

Voice of Customer Trip (VoC)

What did we observed and learned from the visits?

Impressive Probe Card Test Areas!

Lots of customization of the systems

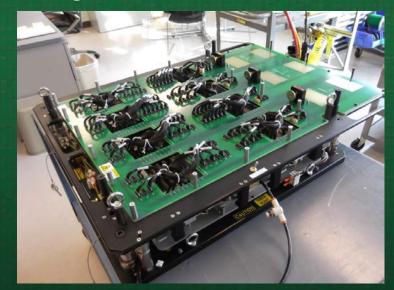
Large Probe Card Interface (PCI) Investment

After VoC Trips – Discussions

How are customers using our systems TODAY

- What features are customers NOT utilizing?
- Are there new alternative testing methodologies that customer may not be aware of?
- Are customers getting the most out of our PCAs today?

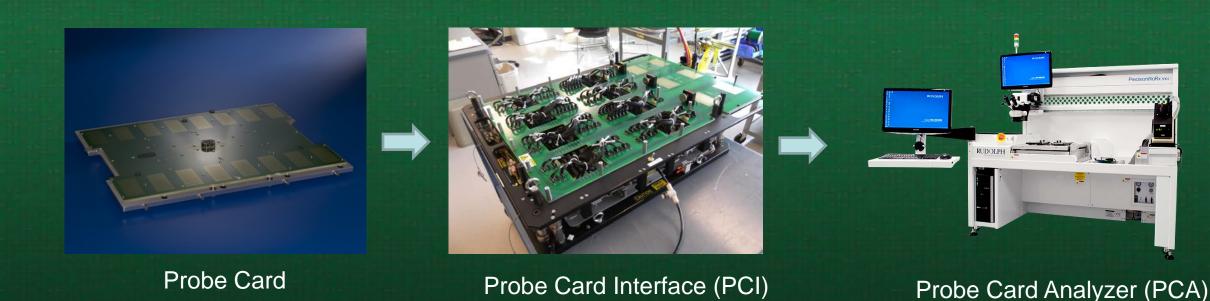
Inspiration for this presentation


- Can we help you save money today?
- What alternative testing methodologies can be used today on your current PCAs?

PCA – Testing Methodology

How have we historically tested a probe card?

- Need Probe Card Interface to test (PCI)
 - Wires up ALL channels of the Probe Card to the PCA
 - Emulates the "Prober Test Head" Mechanically and Electrically
 - Can be a high cost item.



V93K Full Emulation PCI

Tester and Prober Test Head

PCA – Testing Methodology

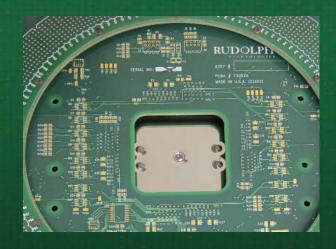
- Install Fully Assembled Probe Card into the Probe Card Interface (PCI)
- Install the Probe Card / PCI on a Probe Card Analyzer (PCA)
 - PCA is fully capable of measuring both Electrical and Mechanical probe card properties
 - Run "Full" test recipes Measure both Mechanical and Electrical properties of the probe card

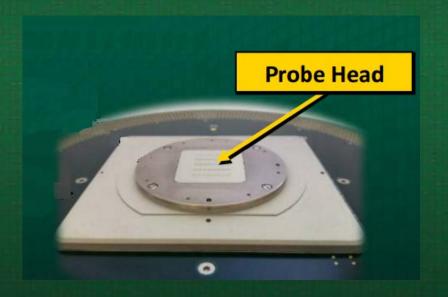
Are There Alternative Test Strategies?

Can we challenge the conventional test methodology?

- Do we need a fully assembled probe card?
- Do we need a PCI to test a probe card?
- Do we need the PCI to fully emulate the prober test head?
- Do we need a PCA with both Mechanical and Electrical measurement capability?

Analyze each one of these test methods


- Can we do these alternative test methods and are they valid?
- What benefit do you get? Does it save you money?

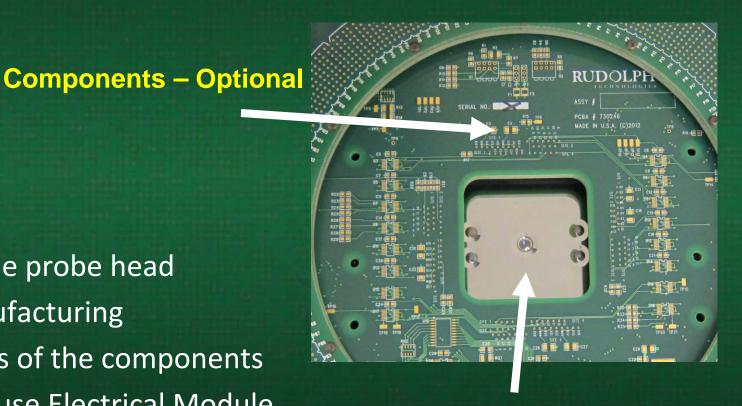

Modular Testing of a Probe Card

Do we need a fully assembled probe card?

- Testing probe card modules
 - Measure the Bare PCB board before assembly With or with out components
 - Measure the probe head before assembly (When possible)
 - What kind of tests can I do?

Bare PCB Board – With or Without components

2013 SWTW - SV Probe


Modular Testing - Bare board Measurements

Run all Electrical Tests (With or without Compenents)

- Leakage
- Capacitance, Capacitors
- Resistors
- Relays / Components

Benefits

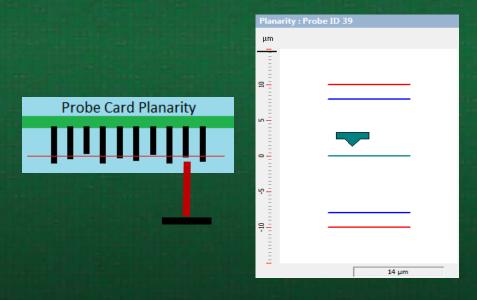
- Isolate the PCB issues from the probe head
- Find problems earlier in manufacturing
- More accurate measurements of the components
- PCA utilization: Only need to use Electrical Module

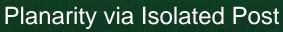

No probe head installed

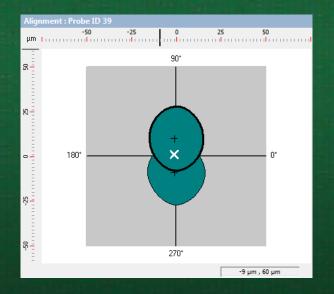
Module Testing - Probe Card Head

- How can we test a Probe Card Head?
 - How do we mechanical connect the probe card head?
 - Hold the probe head via simple fixture. (Probe Card Holder)
- How do we electrically connect?
 - Connect the ground plane of the Probe Head to "PCA Ground Connection"

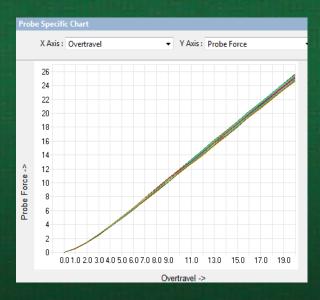
Universal Probe Card Holder




PCA Ground Connection


Module Testing: Probe Card Head

What kind of tests can we run on a probe head?


- Planarity Find lowest probe via the ground probes
- Planarity Find ALL probe planarity position via isolated posts (Force or Electrical)
- Alignment Measure both "No Touch" and "Overtraveled" Positions
- Probe Force Measure individual probe spring rates

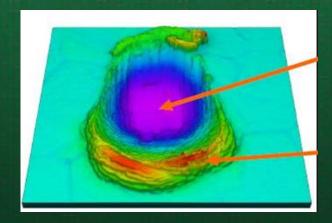
Alignment

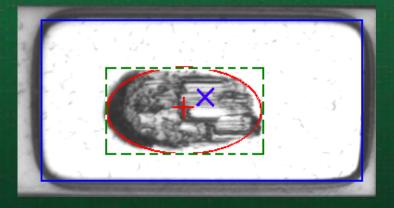
Probe Force

Module Testing - Probe Card Head - Valid?

- Are the Planarity and Alignment Test Results Valid?
 - Concerns: Probe Card/Head Holder is not fully emulating the prober test head
 - Concerns: Little PCI Mechanical Stiffness in our test setup
- How does this affect the Planarity results?
 - Lets dive in deep and take a look!

Probe Card Holder


VS.


Full PCI Test Head Emulation

Why do we measure Planarity?

- A Major Reason: Confidence we will make a good connection with pad / bump
- A probe card with good planarity will typically have these properties
 - Consistent Probe force: Minimizes variations in contact force with the pad or bump
 - Benefit Helps control consistent Scrub Depth and Contract Resistance
 - Consistent Overtravel of the probe:
 - Benefit Minimizes the variation of the scrub length.
- A very important indicator of the quality of the probe card

Karklin et al, SWTW 2008

Consistent Scrub length, Depth, Position

Planarity – PCA - 2 Methods No Load vs Loaded

No Load Planarity:

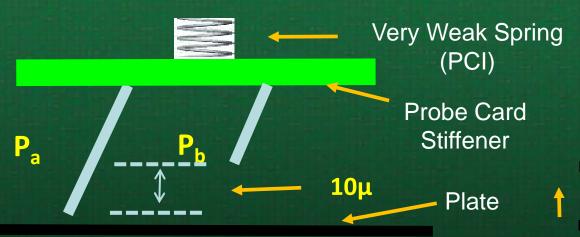
- Measures probes Z positions in "Free hanging" space typically with the isolated post
- Optical planarity also measures "Free hanging" space of probes

Loaded Planarity:

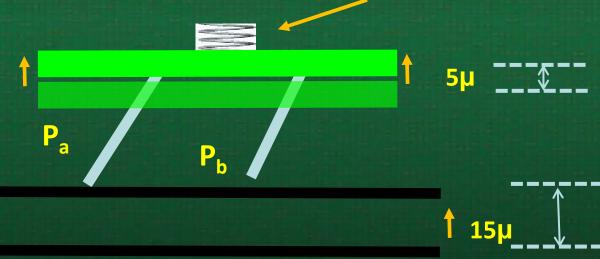
No Load – Isolated Post

- Measure probes with the Plate / Dot (Emulates how probe card is used on the prober)
- Probes

 Probes


 Probes

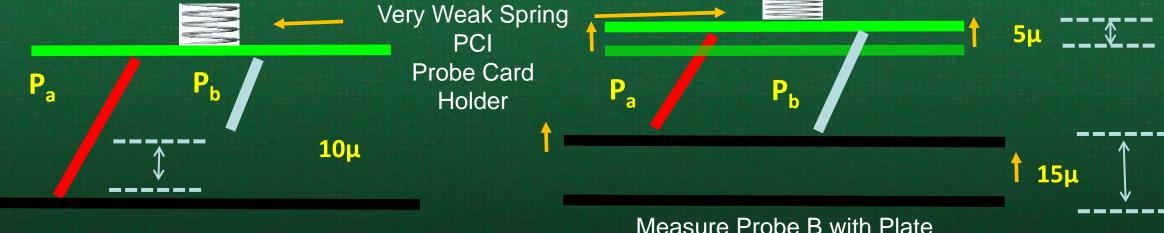
 Checkplate / Dot


Loaded - Plate

Planarity – Thought Exercise

- What planarity method predicts probe variations? (Force, Overtravel, Scrub length...)
 - Probe card with only 2 probes Probe A and Probe B (Rigid Probe Card Stiffener)
 - No Load Planarity Results: Probe A = 0 and Probe B = 10 microns, and held in a probe card holder
- Measure Loaded Planarity
 - Move Plate up to touch probe b Found after moving up 15μ
 - Spring Compresses 5 microns (Pa = 0, Pb = 15)

Move plate up until touch Probe A

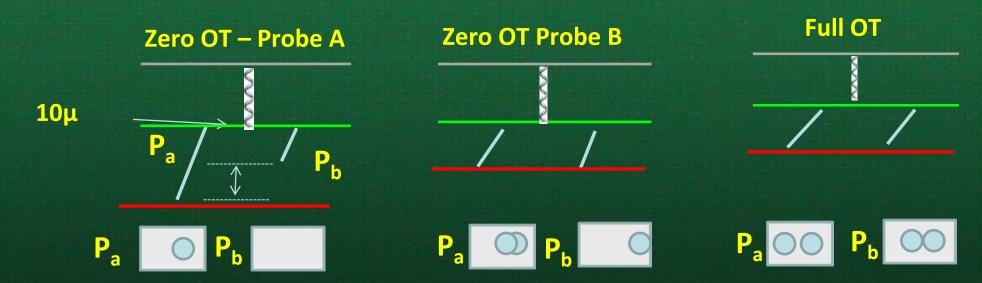

Spring Compresses

Measure Probe B with Plate Drive Z stage up 15 microns

Planarity – Thought Exercise

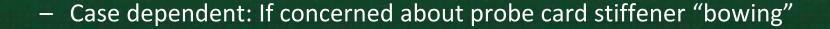
• HOW FAR DID WE OVERTRAVEL PROBE A?

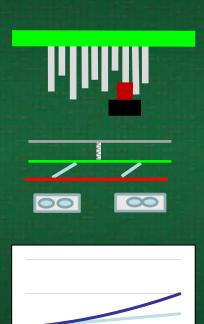
- 10 microns! (15 stage overtravel 5 microns PCI/Probe Card Holder deflection)
- Probe overtravel variation is EQUAL to the NO-LOAD Planarity Results
- If you have a rigid probe card stiffener Probe Overtravel Variation is a function of No-Load Planarity!
 - If your concerned with probe card stiffener deflection Load Planarity will measure indirectly the warp of the stiffener
- Probe overtravel variation is largely independent of PCI probe card holder deflection
- What planarity method you use is case dependent



Measure Probe A with Plate

Measure Probe B with Plate Drive Z stage up 15 microns

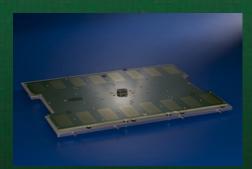

Alignment – With Probe Card Holder


- Are Alignment tests results with a probe card holder also valid?
 - Probe Scrub Length variation is also a function of probe planarity Same situation
 - NOTE: Individual probes also contribute to scrub length variation. (Scrub rates)
- Alignment: Scrub Length variation is largely independent of PCI Deflection
 - Isolating the probe card scrub length variation (When probe card stiffener is ridged)
 - Case dependent: You have options

Probe Head - Summary

- Yes We can measure valid Planarity and Alignment results on a probe head!
 - No Load Planarity directly correlates with overtravel variation of the probes (Largely Independent of Probe Card Holder and System Deflections)
 - No Load Alignment directly correlates with scrub variation of the probes (Largely Independent of Probe Card Holder and System Deflection)
 - Load Planarity = "No Load Planarity" + "All System Deflections"

Do we need a PCI to test a probe card?


• What did we learn?

- You have options on how you want to test your probe cards
- You can measure with a simple probe card holder and get valid results!

Extending the idea – Do we need a PCI to test a probe card?

- We have an option to measure with a probe card holder
- Benefits Why?
 - Do quick prototype testing, with out investing in an expensive PCI
 - Get valid Planarity and Alignment results for a very low cost
 - Can even do electrical measurements via User Assist

Probe Card

V93K PCI

V93K Probe Card Holder

Note: Probe Card Holder with

Probe Card Stiffener

Do we need to Fully Emulated PCI?

- Extending the idea Can we design PCIs that are simpler. (Lower cost)
 - How much emulation do you need to get valid results? (Full Emulation High Cost)

VS.

- Smart Emulation Lower Cost
- Optimal PCI Design for your specific use case
- Benefits
 - It can save you Money! Balancing Cost of Test vs. Performance

Fully Emulated V93K Design

Low Cost – V93K Design

Do we need to Fully Functional PCA?

Extending the idea – Do we need a fully functional PCA?

- In some case the system may only need to measure Planarity and Alignment
- No Pogo Blocks PCA Option
- An older Low Force PCA can still be used to measure some probe cards (Case dependent)

Benefit?

- Buy only what you need in your PCA (Lower Cost)
- Extend the life of your PCAs
- Optimize the usage of your PCAs
- Save Money!

Summary

Why are alternative Tests Strategies Important?

Module Probe Card Testing

- Benefits: Can find problems earlier in production, Easier to debug issues...

No PCI Testing – Probe Head/ Probe Card Holder

 Do quick prototype testing, get valid Planarity and Alignment results at a very low cost

Low Cost PCI Design

 Balancing Emulation vs. Required performance Do you need full emulation? What is the correct amount of emulation for your probe card design?

PCA Functionality - Usage

- Only buy what is needed
- Optimize the lifetime of the system by understanding what is required in your PCA

SAVE MONEY!

What's Next?

- We will continue to sell, improve and support the current VX4!
- Next generation tool is being designed to meet NEW market requirements

Current VX4 PCA

Next Generation Tool

Thank You - Questions

Acknowledgements

- Craig Connolly RTEC
- Greg Olmstead RTEC
- Bill Favier RTEC